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1. PURPOSE

1. 1 Continue and extend basic study of the phase-modulation technique to

obtain low-noise, broadband, RF amplification. This work includes but is not limited to

examination of existing limitations and how best to pair off these limitations to optimize the

over-all amplifier.

1. 2 Study the use of subharmonic and multiple pumping to obtain improved

characteristics.

1. 3 Study the use of electroni beams as a modulating component for extension

of the technique to microwave frequencies.

1. 4 Study use of other nonlinear storage media such as plasmas, ferrites, or

other possible devices for unique characteristics, advantages, or disadvantages.

1. 5 Study use of the phase-shift techniques to enable design of mixer assem-

blies with broadband, low-noise gain.



2. ABSTRACT

Progress has been made in studying simple-varactor, multiple-varactor and

ferrite-core phase-shift amplifiers. A single-varactor amplifier has been built in an

optimum structure. The latter operates in the reflection mode with a circulator. The

principle weakness of this structure was the diode detector, so considerable study has been

made of this detector. Efficiencies in excess of 50 percent have now been measured.

Study has also been made of a transmission line periodically loaded with

varactors to see what benefits this technique will provide. A suitable structure has been

designed and is being tested.

Also described are ferrite core techniques, which are being used to investigate

phase-shift amplifiers with multiple pumping. A related effect, employing subharmonic oscil-

lations to increase gain, is also discussed.
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3. PUBLICATIONS. LECTURES. AND CONFERENCES

There is nothing to report in this section for the period.



4. GENERAL DESCRIPTION OF PHASE-SHIFT AMPLUFIERS

A phase-shift amplifier is a device in which the phase of an RF wave is varied

by passing the wave through an energy-storage medium whose properties vary due to a

modulating signal. Gain can result when the modulated RF power exceeds the modulating

power. For an id2al (L. e., lossless) medium, gain can always be obtained, but since any

real medium has loss, the potential of the phase-shift principle must be examined under a

variety of circumstances.

Figure 1 shows a general representation for the phase-shift amplifier. A

transmission line is loaded with a nonlinear energy-storage medium (i. e., a dielectric,

ferrite, plasma or semiconductor), When a modulating signal is applied to the line, its

electrical length changes which phase-shifts the incident RF (t. e., pump) wave. The amount

of modulated RF energy will be proportional to the incident RF power, which can be quite

large in many cases. Therefore, a phase detector at the end of the line can receive an

amplified version of the modulating signal, and the gain will be proportional to the incident

RF level.

To form a simple analysis of Fig. 1, assume that V5 influences p more than

a, when V. is small, so a can be considered constant. Then

-u ofejop a •
V2 -• V eI [1+J ;.Q-)Vs] (1)

The phase detector responds to the increment

JAV21 - IVV5 ( ) e--' (2)

Therefore, the maximum modulation power that can be delivered to the phase detector is

I [VI Vs (;a.) e-01l2 YI (3)
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Since the available signal power is

-j vs / Rs (4)

the transducer gain is

GT = 4 [iV 1  e -o e 2 YIR (5)

An interesting conclusion from the above expression is the existence of an optimum line

length, f = I/a, which yields

(GT)max = 0. 544 [-- ]2 VIRs (6)

A second basic characteristic of interest is bandwidth. One potential advantage

of the phase-shift technique is the relative ease of obtaining large bandwidths at high RF

frequencies. The main concern regarding bandwidth is that the input bandwidth be as large

as the desired amplifier bandwidth. In Fig. 1, the input bandwidth is

B = 1/RC (radians/sec) (7)

where C is the total capacity of the loaded section of line. Since C is proportional to f, say,

C = kW, then1

B = 1/RskP (8)

and

B,/GT)m.x = 0.74 [V 1, ]Y/7i/k

k (9)S= ~aVs I/-inc

lIn this analysis, no attempt is made to improve the input bandwidth by a slow-wave structure.

However, this is an obvious extension, which will be considered in the future.

5



z.F PHASE AMPLIFIED

SPURCP V V2 DETECTOR SIGNAL OUT

L PROPAGATION CONSTANT I
I I~~1
L -PHYSICAL LENGTH A

1.- CHARACTERISTIC ADMITTANCE.-1
Yz

Fig. 1. General representation of a phase-shift amplifier.

where Pinc is the incident RF pump power. Therefore, this gain-bandwidth product is

independent of the length of the line. This conclusion, of course, neglects any conditions

that RF bandwidth may impose on 0. Since the latter conditions depend more explicitly on

the nature of the nonlinear medium, this effect will be taken up in greater detail later.
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5. VARACTOR PHASE-SHIFT AMPLIFIER

To date, phase-shift amplifiers have been realized mainly with varactors.

Since a varactor is a lumped element, the distributed phase-shift representation in Fig. 1

may not seem appropriate in this case. However, image parameter theory overcomes this

apparent difficulty. In Fig. 2, a varactor with admittance Y is centered in a section of line

whose unloaded electrical length and characteristic admittance are 0 and Y0 , respectively.

The equivalent homogeneous line has electrical length and characteristic admittance 3 and

Y I' r e s p e c t i v e ly , w h e r eY = j O( 
0v = a + j3 (10)

San + tan 2 I

tanhV/2 = - Y t 6- I (11)

and

YI tanh/ 2
Y tan 2 (12)

For a given varactor, these equations can be solved for a and/3, and then 20/ 2V determined

from the varactor characteristic. By this procedure, the essential phase-shift amplifier

characteristics for any varactor can be obtained.

The main advantage of approaching varactors in the manner of Fig. 2 is the

ready extension to a cascade of varactors. The properties of a periodically-loaded line can

be derived from those of the single varactor configuration, if the latter is represented as in

Fig. 2. Hence, a periodically-loaded line of varactors is a logical extension of the single-

varactor phase-shift amplifier.

7



9-- ---- --- --

Y, LINE

Fig. 2. The representation of a single varactor in a section of line as
an equivalent transmission line, using image parameter theory.

5. 1 Single-Varactor Phase-Shift Amplifier

Most of our work to date has been on the single-varactor version. In this case,

there are two basic modes of operation, which are illustrated in Fig. 3. In both cases, a

short circuit is positioned to resonate the static varactor susceptance. It is readily shown

from (10) and (11) that tuning the varactor at midband gives the greatest phase-modulation

sensitivity.

As drawn, the two configurations in Fig. 3 have identical performance.

However, when a circulator is available, the reflection mode becomes superior. The

resulting configuration is shown in Fig. 4. The analysis of Fig. 4 has been reported previ-

ously (Refs. 1, 2 and 3), but in these prior studies the most overlooked part of the system

was the phase detector. The form of phase detector that has been used to date is shown in

Fig. 5. There an inserted carrier is used to change the reflected signal from the varactor

into an AM envelope. The question of AM detector efficiency now arises. The detection

efficiency will depend largely on the diode used, which in turn depends on the pump frequency.

If the detector problem is neglected, the gain-bandwidth product tends to increase with pump

frequency. Therefore, high frequency detectors are of greatest interest. The results of our

study of detectors are discussed in Section 3.

An experimental phase-shift amplifier employing a single varactor, has been

constructed as shown in Fig. 6. The RF (pump) bandwidth of this system is determined by

the varactor. It is found that the shunt conductance of a conventional cartridge-type varactor,

when mounted in shunt across an X-band waveguide, approximately equals the characteristic

admittance of the waveguide. Therefore, there are frequencies where reactive tuning (by a

short behind the varactor) will produce a matched load. The midband reflection coefficient Is

8



PHA SEDETECTOR

PUMP EFFECTIVE
LOAD

p• 
TUNER

PUMP

Fig. 3. Two equivalent methods of using a single
varactor as a phase-shift amplifier.

; PUMP%

• 
• 

CIRCULATOR

PHASE
DETECTOR

Fig. 4. The use of a circulator to improve the reflection-mode
phase-shift amplifier.

then essentially zero. The equivalent circuit in Fig. 7 now describes the varactor and

circulator in Fig. 4. The effect of bias or modulation (Vi n Fig. 7 is to produce a change

of capacity

ac (-) v (13)

This change of capacity produces a reflection

P A = -'• (14)
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COUPLER

INSERTED ',PUMP

CARRIER 'DV ACO

COP E 
T, VARACTOR

AM • COUPLER

AMDETECTORT(

Fig. 5. A detection scheme for the phase-shift amplifier. An inserted
carrier is adjusted to be in quadrature with the pump (referred to

the detector). The reflected signal from the varactor now
appears as an amplitude envelope on

the inserted carrier.

where Q = p C/2Y , and a shift in resonant frequency

AW Ac TV (15)
_W 2 C s

where T denotes the relative tuning rate due to bias. It is thus possible to eliminate the

least measurable quantities, AC and C, to obtain

p = 2QTV s (16)

Both Q and T are easily measured, so they do not have to be calculated from the more

conventional varactor characteristics, which are often incomplete.

A check on (16) has been made by measuring the quantities directly. Figure 8

shows p and Aw vs. bias, which by (16) corresponds to Q z 13. The Q can also be measured,

since the reflection in Fig. 7 varies with frequency according to

p w 2Q•- (17)
0

10



•,SIGNAL DETECTOR

VARACTOR I IN OUT INdERTED
• ' •i I1•CARRIER

S~~CIRCULATO ?

3-DB COUPLER

Fig. 6. A "breadboard" model of the phase modulation amplifier.
Pump frequency 9. 4 kMc. Signal bandwidth 100 Mc.

The results of this measurement are shown in Fig. 9, which shows Q - 12 and checks well

with Fig. 8.

The total sideband power due to a low level sinusoidal modulation is

;sB = °2 pp (12)

where Pp is the incident pump power. Therefore, using the expression in (16) for reflection

coefficient, the transducer gain can be written

detected output signal power (19)
GT = available input signal power

= 4Rs (2QT)
2 

2 p
s p

2
where 12 is the detector efficiency. This expression is identical to (53) in Ref. 1, but (18)

has the advantage of containing more easily measurable quantities.

Initial experiments with the circuit in Fig. 6 have produced voltage gains in

excess of 20 db, as shown in Fig. 10, but the bandwidth of the output detector was rather

11
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Fig. 7. The equivalent circuit of Fig. 4 when varactor
loss matches the circulator.
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Fig. 8. The measured variation of reflection and tuning with bias
for a varactor shunting an X-band waveguide. Zero bias

resonance frequency 9450 Mc.

narrow in this case. At present, a more suitable detector is being developed according to

the observations in Section 3. The results will be reported next quarter.

5.2 Multi-Varactor Phase-Shift Amplifiers

Although the simple gain-bandwidth relation in (9) is independent of line length,

there are several reasons for pursuing distributed structures. First, the transducer gain

times bandwidth is proportional to line length. Second, commercially available varactors in

simple mounts offer only certain natural bandwidths, so distributed structures are a useful

means of trading gain for bandwidth. Third, the derivation of (9) does not include effects due

12
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Fig. 9. Measured reflection coefficient vs. frequency shift for

the same varactor as in Fig. 8.
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Fig. 10. Voltage gain vs. pump power for 9. 5 kMc pump.
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,DA IDEAL I"DEAL

,ig. 11. The periodically loaded line of varactors presently under
study for a phase-shift amplifier. Each varactor is tuned at

midband and coupled to the line by a transformer. The
appropriate spacing in this case is a quarter wave-

length at midband.

to the extra RF bandwidth limitations that are imposed by the distributed structure. A study

has been started that will evaluate these aspects of distributed varactor structure.

The distributed structure that is presently being studies is shown in Fig. 11.

With this structure, we are seeking 20 db gain from dc to 1000 Mc. An optimum structure

has been designed, but the results will be given further checking before they are reported.

Also, some supporting experimental work is planned for the next quarter.
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6. MICROWAVE DETECTOR EFFICIENCY

The basic principle of the phase shift amplifier is modulation followed by

demodulation, but only the former is capable of gain. Therefore, care must be taken that

the efficiency of the latter is as large as possible. A suitable definition of detector efficiency

is (Ref. 4).

2 detected ac power (20)
77 sum of all sideband powers

For a given diode and frequency, this efficiency tends to vary with the detector load, the

carrier power, and the impedance the diode presents to the sidebands. A circuit for measuring

detector efficiency is shown in Fig. 12. With this circuit, the efficiency at X-band of 1N23B

and IN23B has given the best results and these are shown in Fig. 13. It is of interest that

efficiencies in excess of 50 percent have been obtained. However, the highest efficiencies

occur for low carrier powers and large detector loads, where the detector bandwidth is small.

For the 1N23B, a good operating point from the standpoint of bandwidth is at about 20 mw

carrier power and a 200 ohm detector load.

Similar measurements to these in Fig. 13 have been made on 1N263 diodes and

the results are plotted in Fig. 14. The latter show a lower output impedance (about 50 ohms),

but less efficiency (about 14 percent). Further measurements will be made on both diodes

with external bias to see what improvements are possible. Also measurements of efficiency

vs. bandwidth are planned.

15
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Fig. 12. The circuit used for measuring detector efficiency. The
sideband power is determined by accurate measurement of the

percentage modulation. The load resistance is varied,
and the diode tuned for a maximum ac output with

each load resistor. The curves in Figs. 13
and 14 were obtained in this way.
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0 200 400 600 Bo0 000 200
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Fig. 13. Peak detector efficiency vs. load for a 1N23B diode
detector with various carrier powers (frequency 9 kMc).
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Fig. 14. Peak detector efficiency vs. load for a IN263 diode
detector with various carrier powers (frequency 9 kMc).
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7. MAGNETIC PHASE-SHIFT AMPLIFIERS

It has been found that some magnetic amplifiers operate oni the phase-shift

amplifier principle. Therefore, a study of phase-shift techniques with fe.-rite cores has been

initiated. Ferrite cores offer several advantages over varactors. One advantage is an

inherently symmetrical characteristic which enhances temperature stability. A second ad-

vantage is complete dc isolation. The principle disadvantage of cores is their limited fre-

quency range. Nevertheless, cores can be used to test various phase-shift amplifier

techniques.

One new technique that is being studies with magnetic amplifiers is multiple

pumping. The spectrum involved in this case is shown in Fig. 15. Phase modulation side-

bands are produced by the mixing of ws and wp, However these sidebands are in a degenerate

parametric amplifier relationship with 2w P. Therefore, by maintaining a proper phase

relationship between p and 2wp , the sidebands can be enhanced.

An alternate viewpoint of this system is that the pump harmonic acts like a Q

multiplier in the original pump tank. An analysis of this effect has been completed (Ref. 3)

and two basic results obtained:

1. A 60 percent increase in gain-bandwidth product can be

obtained by harmonic pumping.

2. By virtue of the Q multiplying feature, harmonic pumping

offers a convenient method for trading bandwidth for gain.

An extreme case of harmonic pumping occurs when the pump harmonic cause the pump

circuit to undergo subharmonic oscillations. In this case a modulating signal (ws) can be

used to vary the phase of the subharmonic oscillation, which would be a sensitive means of

amplification. In addition, the subharmonic oscillation could be operated in a quenching mode

for still greater sensitivity. The over-all system is shown in Fig. 16.

The system in Fig. 16 is being studied with magnetic cores. A special

feature of cores that will be employed in this case is core symmetry, which produces only

18
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SIDESANS

Fig. 15. Spectrum of phase modulation spectrum

with harmonic pumping.

SHIFT PARAMETRIC DEITErCTOR
AMPLIFIER AMPLIFIERI

Fig. 16. A particular realization of Fig. 15,where the de-
generate parametric amplifier acts as an active filter.

Both superregenerative and continuous
modes are possible.

odd pump harmonics In the absence of a signal. Only when a signal is applied do even

harmonics appear, so a second harmonic output device would be very temperature stable.

This mode of operation is very similar to the basic phase shift amp, but with a second

harmonic output the circuit in Fig. 16 must be modified slightly. The degenerate parametric

amplifier will now operate at 2w p t w s, and its pump will be at 4w p. Further study of this

principle is scheduled for the next quarter.

19



8. CONCLUSIONS

At this time, our conclusions are incomplete because the reflect only one

quarter's work. However, the following facts are noteworthy at present:

1. A phase-shift amplifier can be modeled in a general way so

the many possible phase-shift techniques can be related and

compared. An appropriate model is that in Fig. 1.

2. The performance of a single varactor phase-shift

amplifier can be predicted from simple measurements

on a varactor. However, these measured quantities differ f
from the conventional ratings given by varactor manufacturers,

so a correspondence is still required.

3. Multiple varactor structures can improve phase-shift

amplifier characteristics by allowing greater flexibility in

impedance level and hence bandwidth.

4. The efficiency of the detector in a phase-shift amplifier

has been measured and can exceed 50 percent.

5. Multiple pumping adds another useful degree of freedom

to phase shift amplifier design. At present, superregenerative

detection appears to be the most useful multiple pumping effect.

20



9. PROGRAM FOR THE NEXT INTERVAL

During the next quarter emphasis will be placed on the following phases of

this project:

a. Further study of single varactor circuits with improved

output detectors will be made.

b. The design of a multiple varactor phase shift amplifier

will be completed and initial experimental tests performed.

c. The study of multiple pumping techniques with magnetic

core, phase-shift amplifiers will be continued.

21
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